If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4=2t-8t^2
We move all terms to the left:
-4-(2t-8t^2)=0
We get rid of parentheses
8t^2-2t-4=0
a = 8; b = -2; c = -4;
Δ = b2-4ac
Δ = -22-4·8·(-4)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{33}}{2*8}=\frac{2-2\sqrt{33}}{16} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{33}}{2*8}=\frac{2+2\sqrt{33}}{16} $
| 11x+5=-15 | | 1.8x+0.7=1.1-1.4 | | u/3+1/6=u/2 | | 2m-9m+5m2=8m2 | | 3a+7+2(3+3)=0 | | x^2=^589 | | 5u/2=50 | | 5=6+n/12 | | 0=12+3t-5t^2 | | -3+3n=-6-6n | | 4x+9=302 | | 42=2x-5(x-12) | | 4x-8=8x-36 | | 49=7/6u | | -7-1a=-2a | | 6u=8u+6 | | 8=12t-5t^2 | | -6(x–2)=-48 | | -2(4x-2)=-2 | | -8=2(7+z) | | 2^16^x=16^2^x | | 358935u395u35=2242 | | 39-8n=-24-29n | | 4+(-1x)=10 | | 4+9-1x)=10 | | (320x−2125)(1087x+9158)=0 | | 15=t/6 | | 2/5x-1=3/10x+4 | | 3k−2=2k+4 | | 3k−2=2k+2 | | 25=6g+1 | | 15x-21=9x+1 |